原始文章

這篇文章整理了腎臟間插細胞分化和酸鹼平衡調控的最新發現,指出Foxp1、Dmrt2、Hmx2等轉錄因子對細胞發育很重要,Notch和Foxi1訊號則影響主細胞和間插細胞的轉換。單細胞定序也發現了過渡型細胞,顯示細胞命運有彈性。這些分子機制的了解,有助於未來開發治療酸鹼失衡的新方法。 PubMed DOI


站上相關主題文章列表

Foxp1 是一個重要的轉錄因子,對腎臟集合管中間插入細胞的分化至關重要,這些細胞有助於調節身體的酸鹼平衡。研究顯示,Foxp1 的缺失會阻礙這些細胞的分化,導致腎小管酸中毒。Foxp1 調控 Dmrt2 和 Hmx2 的表達,這兩者對 A 型和 B 型中間插入細胞的分化不可或缺。此外,Foxp1 在 Notch 信號傳導中也扮演關鍵角色,進一步影響中間插入細胞的特徵與功能。 PubMed DOI

新生後期腎小管的發育對成人腎功能至關重要,尤其對巴特氏綜合症(BS)的研究更是關鍵。研究指出,腎小管結構的發育和功能受到流動和離子通量的調節影響,而改善氧合和主動運輸則有助於提升腎小管細胞的能量供應。了解這些機制對治療先天性腎小管病變可能有所助益。 PubMed DOI

鈣 (Ca2+) 是人體重要的二價陽離子,對骨骼、細胞生長、血液凝固和肌肉收縮等功能至關重要。99% 的鈣質儲存在骨骼中,主要透過小腸和大腸吸收,腎臟則過濾並重吸收超過 95% 的鈣。鈣的運輸有兩種途徑:旁細胞途徑和細胞內途徑,並受到激素如甲狀旁腺激素的調控。鈣的穩態失調可能導致高鈣尿症,與腎結石形成有關。本文探討腸道和腎臟中鈣穩態的分子機制及相關遺傳疾病。 PubMed DOI

這項研究探討了間質細胞在腎臟發育中的重要性,特別是在人體胎兒腎組織中識別的特定細胞群。研究人員提取了條碼化的cDNA,並創建了空間轉錄組庫,使用Seurat進行聚類分析,並整合單細胞與空間數據。他們發現與WNT信號通路相關的差異表達基因,這對腎臟發育至關重要。此外,研究強調了細胞間的配體-受體相互作用,並發現17個與腎病相關的基因主要在特定細胞類型中表達,增進了對間質細胞角色的理解。 PubMed DOI

這篇綜述回顧了腎臟皮質厚升支(CTAL)的研究進展,從1973年莫里斯·伯格的基礎研究開始,確立了CTAL在主動重吸收NaCl同時保持低水通透性的重要性,對於腎臟在高水攝取時產生稀尿至關重要。1980年代的研究確定了NaCl運輸的特定過程,1990年代則透過cDNA克隆技術識別了關鍵運輸蛋白基因。2010年代,基於微分方程的模型進一步改善了對CTAL運輸機制的理解,並探討了幾個關鍵問題。 PubMed DOI

腎素對調節血壓和電解質平衡至關重要,其產生與Foxd1+基質前體細胞有關。本研究探討轉錄因子Tcf21在這些前體細胞分化為近腎小球細胞(JG細胞)中的角色。結果顯示,缺乏Tcf21的小鼠腎臟中腎素產生區域減少,顯示Tcf21對腎素細胞形成的重要性。然而,當Tcf21在已建立的腎素細胞中失活時,並未出現預期變化,顯示其在細胞身份確立後並非必需。研究強調Tcf21在早期腎臟發育中的關鍵角色,提供JG細胞分化的分子機制見解。 PubMed DOI

腎臟的發展與功能依賴於腎細胞與細胞外基質(ECM)之間的互動,主要透過整合素來實現。整合素作為膜結合受體,連接ECM並與細胞內適配蛋白形成黏附複合體,這對細胞功能的調節至關重要。不同腎小管段和集合管系統擁有獨特的整合素組合,這些整合素的功能受到內部結合蛋白的影響,進而影響腎臟的發展、功能及修復過程。這篇綜述強調了整合素及其相關結合夥伴在腎臟生理與病理中的重要性。 PubMed DOI

能量代謝與運輸過程對腎臟近端小管細胞的功能非常重要。最近的研究利用代謝組學和轉錄組學,揭示了單細胞轉錄組特徵變化與腎臟發育及疾病的能量代謝之間的關聯。研究發現,近端小管細胞可依脂肪酸氧化酶的mRNA水平分為高低兩群,慢性腎病患者的低氧化能力細胞比例較高,且與鈉運輸蛋白水平降低有關。這些發現有助於理解不同代謝能力如何影響患者的疾病特徵,為腎臟科的精準醫療提供依據。 PubMed DOI

這項研究發現,小鼠腎臟的Henle氏環薄下行支(TDL)細胞有部分是由近曲小管細胞轉變而來,而Hnf4a這個轉錄因子對於TDL細胞標記蛋白Aqp1的表現很重要,顯示Hnf4a在TDL細胞形成上扮演關鍵角色。 PubMed DOI

Tldc2這個基因在腎臟B型間質細胞(B-ICs)表現很高,對維持身體酸鹼平衡很重要。把Tldc2敲除後,小鼠尿液pH會下降、排碳酸氫鹽能力變差,B-ICs數量減少,還會影響V-ATPase質子幫浦的定位。這表示Tldc2對B-ICs功能和酸鹼調節很關鍵,也有助於辨識這類細胞。 PubMed DOI