原始文章

這項研究發現,CD248 是糖尿病腎病變中,促進腎小球新生血管和腎間質嗜酸性球浸潤的關鍵基因。CD248 會上調 VEGFC 促進血管新生,也會提升 CCL-5 招募嗜酸性球。這些結果在病人、動物和細胞實驗都被證實,顯示 CD248 可能是影響 DN 病理變化的重要因子。 PubMed DOI


站上相關主題文章列表

腎小管外細胞增生被視為糖尿病腎病(DKD)的不良預後因子,但其機制及與腎小球硬化的關聯尚不明確。研究分析107名DKD患者,發現25名有腎小管外細胞增生的患者臨床症狀較嚴重,蛋白尿和血清肌酸酐水平較高,血清白蛋白則較低。病理上,這與系膜增生、間質纖維化及嚴重微血管病變有關。細胞分析顯示,這些患者有足細胞表型損失及缺氧誘導因子-1α表達增加,顯示血管損傷與腎功能障礙的關聯,強調需進一步研究其影響。 PubMed DOI

本研究探討M2巨噬細胞在糖尿病腎病(DN)中的治療效果及其機制。透過每週注入IL-4刺激的M2巨噬細胞至db/db小鼠,結果顯示M2巨噬細胞能顯著減少腎臟炎症,降低IL-1β和MCP-1的水平,並減輕高葡萄糖引起的細胞損傷。M2巨噬細胞在腎臟的數量於注入後第三天達到高峰,並改善了M1/M2的比例。機制上,M2巨噬細胞下調了JAK2和STAT3信號通路。這顯示M2巨噬細胞注入可能成為治療DN的新方法。 PubMed DOI

腎臟發炎在糖尿病腎病(DKD)的發展中非常重要,免疫細胞的浸潤是主要特徵。研究顯示,鈉葡萄糖共轉運蛋白2抑制劑(SGLT2i)如dapagliflozin對DKD有抗發炎效果,但其機制仍不明。研究人員透過單細胞轉錄組學分析,發現58,760個細胞中有特定的抗發炎巨噬細胞亞群。dapagliflozin治療後,Ccl3+巨噬細胞數量減少,而Pck1+巨噬細胞增加。這些結果提供了DKD中免疫過程的分子機制及潛在治療靶點的新見解。 PubMed DOI

當歸補血湯(DBD)是一種傳統中藥,主要由黃耆和當歸製成,主要用於滋養氣血。研究顯示,DBD對糖尿病腎病有改善效果,能增強自噬並減少腎纖維化。實驗中,DBD治療的糖尿病小鼠在腎功能和炎症指標上都有顯著改善,並且在高葡萄糖環境下,DBD能提升人類腎足細胞的活性。研究還發現,DBD透過miR-27a/PI3K/AKT信號通路調節自噬,顯示其在糖尿病腎病管理中的潛力。 PubMed DOI

這項研究探討腎小管上皮細胞(RTECs)產生的免疫球蛋白G(IgG)在糖尿病腎病(DKD)中對腎小管間質纖維化(TIF)的影響。結果顯示,DKD患者的RTEC-IgG水平升高,與腎功能差、貧血加重及纖維化程度相關。在DKD小鼠模型中,IgG水平也與TIF正相關。高葡萄糖環境下,RTECs中的IgG表達增加,靜默IgG可減少纖維化相關標記物的表達。這些結果顯示RTEC-IgG透過TGF-β1信號促進EMT及纖維化,進而加速DKD進展。 PubMed DOI

這項研究探討了壓力反應蛋白REDD1在糖尿病腎病中的角色,發現高血糖會透過增加REDD1的表達來加劇腎臟的炎症反應。實驗顯示,糖尿病小鼠中REDD1蛋白水平上升,伴隨免疫細胞浸潤。使用SGLT2抑制劑dapagliflozin後,血糖和REDD1水平均下降。REDD1基因剔除小鼠則顯示出炎症反應減少,顯示REDD1對炎症至關重要。研究結論指出,針對REDD1可能成為治療糖尿病腎病的新策略。 PubMed DOI

糖尿病全血管病(DPD)是糖尿病的一大併發症,會導致多個器官血管動脈硬化,增加失能和死亡風險。研究建立了單細胞血管圖譜,分析了321,358個細胞,識別出63種細胞類型,特別是內皮細胞在細胞間互動中扮演關鍵角色。研究還探討了心臟與腎臟的互動,發現BMP信號通路對糖尿病心腎併發症至關重要,且SGLT2抑制劑能調節BMP6水平。這些發現有助於未來DPD的預防與治療策略。 PubMed DOI

糖尿病腎病是腎衰竭的主要原因,因持續高血糖影響代謝及基因表達。近期研究發現,生長停滯和DNA損傷誘導因子45α(GADD45α)在糖尿病腎病中扮演關鍵角色。研究透過糖尿病小鼠模型,發現GADD45α在腎臟中的水平降低與腎功能障礙有關,且其缺乏會加重腎損傷。GADD45α能與R環相互作用,促進STEAP4的轉錄,缺失此通路會導致氧化壓力增加。這項研究為糖尿病腎病的治療提供了新方向。 PubMed DOI

這項研究利用生物資訊學找出糖尿病腎病(DN)的潛在生物標記,特別是關鍵基因lumican的角色。研究團隊分析了兩個DN數據集,並進行GO和GSEA-KEGG富集分析,發現1139個差異表達基因(DEGs),這些基因與細胞間連接及氨基酸代謝有關。樞紐基因在DN患者腎組織中表現上升,且與腎小球過濾率呈負相關。lumican被確認為重要的樞紐基因,並可能成為糖尿病腎病的預測生物標記,對臨床診斷和治療提供新見解。 PubMed DOI

這項研究發現,糖尿病腎病時,METTL3會增加足細胞中TRIM29的m6A修飾,讓TRIM29 mRNA更穩定、蛋白量上升,進而活化NLRP3發炎小體,導致足細胞發炎性死亡。用STM2457抑制METTL3能減輕小鼠腎損傷,顯示針對METTL3的m6A修飾有望成為治療新方向。 PubMed DOI