原始文章

這項研究用深度學習分析FSGS和MCD病人的腎臟切片,萃取出腎小管的細部特徵,發現這些AI計算的數據比傳統肉眼評分或臨床資料更能準確預測病情發展和蛋白尿改善。像基底膜變厚、上皮細胞變扁等變化,和較差預後有關,且會隨纖維化加重。AI分析有助提升風險預測,但臨床應用前還需更多驗證。 PubMed DOI


站上相關主題文章列表

這項研究探討腎小管周圍毛細血管(PTC)特徵與腎小球疾病進展的關聯,特別是間質纖維化和腎小管萎縮(IFTA)。研究分析了344名腎病患者的影像,利用深度學習量化IFTA和PTC特徵。研究人員找出與疾病進展相關的PTC關鍵特徵,並透過機器學習建立風險評分,這些評分與病情結果有關。結果顯示PTC的密度、形狀和結構對理解疾病進展的重要性,並揭示新的數位生物標記及PTC與微環境的互動。 PubMed DOI

原發性局灶性節段性腎小管硬化症(pFSGS)是一種嚴重的腎臟疾病,常導致腎衰竭,且移植後復發風險高。近期研究利用腎臟類器官技術,探討pFSGS患者血漿對腎臟類器官的影響。結果顯示,pFSGS血漿會損害腎小管上皮細胞,並引發炎症反應。相對而言,非復發患者的血漿則無此影響。接受治療性血漿置換的患者,其血漿對類器官的損害減少,顯示腎臟類器官在預測FSGS復發風險方面的潛力。 PubMed DOI

這項研究開發了一個深度學習模型,旨在根據Berden分類法對抗中性粒細胞自體抗體(ANCA)相關腎小管腎炎的腎小管病變進行分類。模型訓練基於80名患者的腎臟活檢切片,達到93%的高預測準確率。研究中使用可解釋的人工智慧技術(如Grad-CAM)來增強模型的透明度,並讓病理學家分析熱圖,確認模型與他們的判斷一致。這項研究展示了深度學習與可解釋性技術結合的潛力,能提升診斷準確性並提供推理見解。 PubMed DOI

深度學習在數位腎臟病理學中展現潛力,但需依賴標註良好的數據集,這類數據集通常稀缺。為了解決這個問題,我們採用了自我蒸餾無標籤學習(DINO)的方法,分析了384個腎臟活檢切片中的10,423張腎小球影像。透過主成分分析(PCA),我們可視化了DINO模型提取的特徵,並進行分類任務。結果顯示,DINO模型在疾病分類上達到0.93的ROC-AUC,優於ImageNet模型,特別是在標註數據有限的情況下,DINO模型的表現更為穩定。這證實了DINO在無標註影像中有效提取組織學特徵的潛力。 PubMed DOI

這項多中心研究開發並驗證了一套用常規血液檢查數據(像是Scr、eGFR、PTH、BNP及性別)的機器學習模型和臨床風險預測圖,可準確預測慢性腎臟病患者的腎臟纖維化嚴重度,提供一個可取代侵入性腎臟切片的實用工具,且在不同驗證隊列中表現都很穩定,未來有望成為臨床上動態、非侵入性評估纖維化的新方法。 PubMed DOI

這項研究開發了一套全自動化系統,運用深度學習和電腦視覺技術,能從TEM影像中快速又準確地分割和量測腎小球基底膜厚度。結果顯示,這系統和人工量測高度相關(R² = 0.85),還能有效分類厚度,有助於臨床腎臟病診斷,省時又減少人為誤差。 PubMed DOI

IgA腎病變(IgAN)患者的足細胞受損和流失,會讓蛋白尿、血尿和腎臟纖維化更嚴重。IgAN和minimal change disease(MCD)患者的足細胞密度都比健康者低,蛋白尿越多,密度越低。足細胞流失主要是細胞壞死和有絲分裂災難造成的,跟細胞凋亡無關;自噬則有保護作用。這些變化和病情嚴重度有關,未來有助診斷和治療。 PubMed DOI

隨著影像檢查普及,腎細胞癌被診斷的案例增加,分辨腎臟良性或惡性病灶變得更重要。AI技術(像機器學習、深度學習)已廣泛應用於腎臟病灶的偵測與分類,協助診斷和個人化治療。雖然AI展現潛力,但仍面臨資料差異、可解釋性及發表偏差等挑戰。 PubMed DOI

這項研究用ResNet18深度學習模型,訓練超過4,000張腎臟切片EM影像,能自動判斷電子緻密沉積物的位置,AUC高達0.928–0.987,表現比資深醫師還好。團隊也開發網頁工具,讓臨床醫師能快速上傳影像並獲得自動判讀結果,提升效率與一致性。 PubMed DOI

FSGS是一種會導致腎衰竭的嚴重腎臟病,目前主要靠腎臟切片診斷,但有其侷限。近年發現血液和尿液中的miRNA可作為穩定的生物標記,有助提升診斷準確度、監測病情、預測預後,還能協助判斷類固醇治療效果,推動更個人化的治療。 PubMed DOI