原始文章

Podocytes 是腎臟裡負責過濾血液的專門細胞,會隨時感應像是營養、氧氣和壓力等環境變化,並透過和周圍細胞或基質互動來調整自身功能。這些調節會影響細胞代謝、免疫和結構,若出問題,可能引發發炎、細胞流失,甚至腎臟疾病。 PubMed DOI


站上相關主題文章列表

腎小球疾病是全球慢性腎病的主要原因,通常由獲得性和遺傳性疾病造成,破壞腎小球的過濾功能。這會導致足細胞受損,進而引發蛋白尿和腎功能障礙。目前已知超過70種單基因引起的蛋白尿性腎病,主要影響足細胞中表達的基因。這些基因對維持腎小球結構和功能至關重要。文章總結了單基因足細胞病的機制,並探討基因組技術和細胞生物學的進展,為個性化療法如小分子和基因治療提供了新方向。 PubMed DOI

腎臟的過濾功能依賴於足細胞的足突結構,這些結構由肌動蛋白支撐。當足細胞受到壓力或損傷時,會發生變化,影響過濾功能。免疫抑制藥物如糖皮質激素、環孢素A等,不僅調節免疫,還能直接影響足細胞,調控鈣離子通道及信號傳導,減少蛋白尿。這篇綜述將探討這些藥物對足細胞的影響及其在遺傳性腎病中的療效。 PubMed DOI

這項研究探討了機械感應蛋白Piezo1在糖尿病腎病(DKD)中的角色,特別是對足細胞損傷的影響。研究人員創建了足細胞特異性Piezo1基因剔除小鼠,並進行了體外實驗,發現Piezo1的抑制能減少鈣流入、細胞骨架變化及凋亡,顯著減緩DKD進展。Piezo1的激活則透過NFATc1和TRPC6信號通路促進足細胞損傷。這顯示Piezo1在感知機械壓力及介導DKD損傷中扮演重要角色。 PubMed DOI

足細胞損傷會引發多種細胞變化,如肥大、去分化、衰老、凋亡和脫落。雖然足細胞衰老在糖尿病腎病中很重要,但具體的觸發因素和機制仍不明朗。Li等人的研究發現,GPR124這種G蛋白偶聯受體能透過抑制焦點黏附激酶,幫助保護足細胞免受衰老影響。這項研究顯示,針對GPR124/焦點黏附激酶通路可能成為糖尿病腎病的新療法。 PubMed DOI

足細胞及其前驅細胞對腎小球結構非常重要,足細胞負責過濾,而前驅細胞則協助再生。這些細胞會受到機械力影響,可能導致功能障礙和腎小球損傷。研究人員探討了Piezo1通道的角色,發現沉默Piezo1會改變前驅細胞形狀,並影響成熟足細胞的分裂。在特定基因剔除小鼠中,Piezo1缺失使腎病損傷敏感性增加,並導致白蛋白尿,顯示Piezo1對足細胞在機械壓力下的存活和再生至關重要。 PubMed DOI

IgA腎病變(IgAN)患者的足細胞受損和流失,會讓蛋白尿、血尿和腎臟纖維化更嚴重。IgAN和minimal change disease(MCD)患者的足細胞密度都比健康者低,蛋白尿越多,密度越低。足細胞流失主要是細胞壞死和有絲分裂災難造成的,跟細胞凋亡無關;自噬則有保護作用。這些變化和病情嚴重度有關,未來有助診斷和治療。 PubMed DOI

這項研究發現,ADAM10酵素會調控腎臟足細胞表面的重要蛋白質,像是THSD7A、PLA2R1和β-dystroglycan,這些都和腎臟過濾功能及膜性腎病變有關。抑制ADAM10會讓這些蛋白質累積,影響足細胞結構和黏附,Tspan15蛋白也會參與調控,進一步影響疾病機制。 PubMed DOI

像minimal change disease和FSGS這類腎小球疾病,會讓足細胞受損、產生蛋白尿,進一步導致慢性腎臟病。研究發現,這些疾病會造成腎小球和足細胞基因的mRNA選擇性剪接和多腺苷酸化出現明顯變化,特別影響過濾屏障相關基因。這些RNA處理異常會破壞足細胞功能,促使疾病發生。部分治療能逆轉這些變化,寡核苷酸也能調控剪接。總之,mRNA處理改變是腎小球疾病的重要致病機制。 PubMed DOI

這項研究發現,腎小球高血壓會讓足細胞超過3,000個基因的mRNA剪接型態改變,特別是Shroom3和Myl6這兩個基因。這顯示替代性剪接在足細胞對高血壓的反應中很重要,也可能成為新的生物標記。 PubMed DOI

糖尿病腎病變是糖尿病常見的併發症,對健康和醫療支出影響很大。最新研究指出,腎臟內細胞間的互動對病情發展很重要。幹細胞和部分藥物有機會調節這些細胞溝通,減少腎臟損傷。深入了解細胞互動,有助於開發新的治療方式。 PubMed DOI