原始文章

在腎臟剛受損時,KLF6這個轉錄因子會在近曲小管細胞裡增加,進一步提升POLR2A(也就是RNA聚合酶II的RPB1)的表現,導致細胞持續去分化、發炎和纖維化,讓急性腎損傷惡化成慢性腎臟病。抑制KLF6或POLR2A能減緩這些傷害,反之過度表現KLF6會讓情況更糟。這條KLF6–POLR2A/RPB1路徑是腎臟損傷後不良修復和纖維化的關鍵。 PubMed DOI


站上相關主題文章列表

阻塞性腎病是嬰幼兒和兒童腎損傷的主要原因,最近研究強調轉錄相關因子(TRFs)在腎病中的重要性。本研究旨在找出在患有阻塞性腎病的兒童及單側輸尿管阻塞小鼠模型中失調的TRFs。分析發現140種人類TRFs中有28種上調,1種下調;小鼠中有160種TRFs,88種上調,1種下調。這些TRFs主要參與炎症和纖維化的信號通路。特別是三種未被探索的TRFs在患者和小鼠中顯著失調,為阻塞性腎病的分子機制提供新見解。 PubMed DOI

這項研究探討了纖維母細胞生長因子23(FGF23)在腎臟磷酸鹽代謝中的角色,特別是它與共受體αKlotho(KL)的互動。研究人員對野生型小鼠注射重組FGF23,並在不同時間點分析其在腎臟的生物活性。他們發現FGF23的影響不受性別影響,但依賴於特定腎臟細胞中KL的表達。研究揭示了FGF23信號傳導的基因組變化,並發現FGF23與MAPK信號傳導及TNF受體之間的意外互動,這可能影響FGF23的生物活性。這些結果為FGF23相關疾病提供了新見解。 PubMed DOI

急性腎損傷(AKI)是一種危險的狀況,腎功能快速下降可能威脅病人生命。最新研究指出RNA結合蛋白(RBPs)在AKI中扮演重要角色,特別是Lgals3。研究顯示Lgals3在AKI模型中表達顯著增加,抑制Lgals3可減少腎損傷,而過表達則會加重損傷。Lgals3透過與Nr4a1基因的3'非翻譯區互動,促進鐵死亡的發生。敲除Nr4a1或阻斷特定區域可保護AKI模型免受Lgals3誘導的損傷,顯示Lgals3在AKI中的關鍵角色。 PubMed DOI

腎纖維化在慢性腎病中扮演重要角色,但目前有效的診斷和治療選擇仍有限。最近研究顯示,RNA結合蛋白(RBPs)在纖維化過程中關鍵。研究人員分析了175個腎纖維化樣本和99個正常樣本,利用生物資訊學和機器學習技術識別重要RBPs。診斷模型顯示高準確性(AUC = 0.899),並得到外部驗證。這些RBPs參與免疫相關通路,並可能成為潛在治療靶點。此研究增進了對腎纖維化機制的理解,並提供了新的生物標記和治療方向。 PubMed DOI

急性腎損傷(AKI)會增加慢性腎臟病(CKD)風險,巨噬細胞在這過程很重要。M1型會引發發炎,M2型有助修復,但停太久會造成纖維化。腎臟的SIRT6酶能幫助巨噬細胞從M1轉M2,促進修復,但也可能導致纖維化。這篇綜述探討SIRT6如何影響巨噬細胞,並討論相關治療策略。 PubMed DOI

AKI後,腎小管會出現多倍體細胞,這些細胞和發炎、纖維化有關,會加速AKI惡化成CKD。SPP1蛋白在這過程中扮演關鍵角色。抑制SPP1能減少纖維化,未來針對SPP1或多倍體細胞治療,有望預防AKI變成CKD。 PubMed DOI

這項研究用單細胞和空間轉錄體技術,詳細分析急性腎損傷時腎臟巨噬細胞和樹突細胞的不同亞型及其分布變化。發現特定巨噬細胞亞型會隨時間和位置改變,像Arginase 1陽性巨噬細胞在初期進入腎皮質,修復期則有增生型巨噬細胞移動。第28天後,巨噬細胞表現出常駐型特徵。這些發現有助於未來腎臟疾病的精準治療。 PubMed DOI

這項研究發現,腎臟小管細胞裡的HIF-1α會直接提升MUC4表現,導致腎臟間質纖維化。把HIF-1α基因敲除後,能減少纖維化和細胞外基質堆積。這說明HIF-1α和MUC4是慢性腎臟病的新治療標靶。 PubMed DOI

這項研究發現,APE1/Ref-1蛋白缺乏會讓小鼠腎臟纖維化更嚴重,像是發炎、氧化壓力、細胞死亡和EMT現象都變多。相反地,正常表現APE1/Ref-1的小鼠,腎臟損傷較輕微。這顯示APE1/Ref-1有助於保護腎臟,減緩慢性腎臟病的惡化。 PubMed DOI

DNA-PKcs 是調控 DNA 修復和細胞週期的重要酵素,在急性腎損傷時會上升,修復後會恢復正常。抑制 DNA-PKcs 會加重粒線體損傷、延長腎損傷和纖維化,還會影響細胞增生。這表示 DNA-PKcs 對腎臟修復很關鍵,有機會成為治療急性腎損傷的新標靶。 PubMed DOI