原始文章

**重點整理:** 慢性腎臟病(CKD)會讓FGF23的濃度上升,進而活化FGF receptor 4,導致心臟問題。Fuchs等人發現,這條路徑會在CKD患者心臟還沒出現明顯損傷前,就已經引發早期的心臟粒線體功能障礙和代謝變化,這暗示了CKD患者心臟併發症的一種新機制。 PubMed DOI


站上相關主題文章列表

血管鈣化(VC)是慢性腎病(CKD)常見的併發症,會增加心血管風險。血管平滑肌細胞(VSMCs)轉變為成骨表型是促進鈣化的關鍵因素。目前尚無有效治療方法。研究指出,線粒體功能障礙在VSMCs的成骨分化及血管鈣化中扮演重要角色,透過多種機制影響鈣化進程。本文綜述了線粒體生物生成、動態變化、自噬、代謝變化,以及氧化壓力和細胞老化對CKD患者血管鈣化的影響,了解這些關係或能改善相關臨床結果。 PubMed DOI

這項研究探討缺氧與成纖維細胞生長因子-23(FGF-23)在缺血再灌注(I/R)引起的急性腎損傷(AKI)中的關聯。研究發現,I/R會增加炎症因子和氧化壓力,並減少保護因子。靜默FGF-23的表達能恢復這些異常,顯示FGF-23在AKI的炎症和氧化壓力反應中扮演重要角色。此外,缺氧再氧合也會影響HK-2細胞的促炎因子和保護因子,靜默FGF-23能減輕這些負面影響,顯示其在AKI中的關鍵作用。這些結果強調FGF-23在缺氧條件下調節腎損傷的重要性。 PubMed DOI

這項研究探討了甘油-3-磷酸(G-3-P)在慢性腎病(CKD)中對纖維母細胞生長因子23(FGF23)水平的調控。研究發現,腎臟在磷酸鹽刺激下產生G-3-P,並促進FGF23的生成。小鼠實驗顯示,雖然兩種基因型的小鼠腎功能不全程度相似,但野生型小鼠的G-3-P和FGF23水平均增加,而缺乏Gpd1的小鼠則顯著減少。這些結果顯示G-3-P在CKD期間的礦物質代謝中扮演重要角色,未來仍需進一步研究其產生機制。 PubMed DOI

腎臟是一個能量需求高的器官,主要依賴三磷酸腺苷(ATP)來運作。腎皮質的近端小管細胞含有大量線粒體,對ATP生成及鈣、磷脂調節至關重要。線粒體功能障礙在腎臟疾病中會引發氧化壓力、發炎和細胞損傷,最終可能導致纖維化。針對線粒體功能的藥物開發或再利用受到重視,因為這些藥物成本低、開發快且安全性已確認。本文探討了線粒體功能障礙對腎臟健康的影響,並提出可能的治療選項。 PubMed DOI

慢性腎臟病-礦物質與骨骼疾病(CKD-MBD)涉及骨外鈣化和腎性骨病(ROD),但ROD的機制尚不明確。本研究探討骨細胞中線粒體自噬受損是否促進骨質流失。結果顯示CKD-MBD小鼠的脛骨中,與線粒體自噬相關的基因表達異常,且ROD小鼠的骨細胞中線粒體溶酶體顯著增加。尿毒症毒素使成骨細胞的線粒體功能受損,但使用雷帕霉素可逆轉這些影響。研究指出尿毒症毒素與ROD之間的因果關係,並提出針對氧化壓力和線粒體自噬的干預可能有助於保護CKD-MBD患者的骨骼健康。 PubMed DOI

慢性腎臟病(CKD)會顯著增加心血管疾病的風險,特別是左心室肥大(LVH)。研究發現,CKD患者體內的纖維母細胞生長因子(FGF)23水準升高,可能透過激活FGFR4促進LVH的發展。在CKD小鼠模型中,線粒體結構和代謝功能的變化在LVH出現前就已發生。FGF23激活FGFR4會導致線粒體問題和能量壓力增加,這些變化可透過基因刪除來預防,顯示針對FGFR4可能成為治療CKD患者LVH的有效策略。 PubMed DOI

FGF23在第二型糖尿病和心血管併發症中扮演重要角色,和胰島素阻抗、β細胞功能異常、發炎及心血管風險增加有關,即使腎功能正常也會受影響。目前機制還不明,治療方式也有限,但未來FGFR4抑制劑有機會成為新選擇,還需要更多研究來釐清其作用與治療潛力。 PubMed DOI

這項研究用多性狀基因關聯分析(MTAG)方法,分析五種礦物質代謝指標的遺傳資料,找出62個和FGF23有關的新基因座。HRG和HMGB1被發現是FGF23的重要調控基因,且在洗腎病患心臟組織中表現高。DNMT3A則和DNA損傷及心衰竭保護有關。整體證明MTAG能發現更多與腎臟病相關心血管疾病的新基因。 PubMed DOI

糖尿病腎病變常因粒線體功能失調導致腎衰竭,維持粒線體品質對腎臟健康很重要。改善粒線體品質有助延緩病情,但現有治療效果有限,針對粒線體的療法雖有潛力,仍需更多研究。這篇綜述強調,粒線體品質控制是未來治療的新方向。 PubMed DOI

慢性腎臟病(CKD)和粒線體功能息息相關,粒線體受損會導致腎臟纖維化和細胞死亡,加速CKD惡化。近年研究發現,調控粒線體健康(如非編碼RNA、DNA甲基化)有機會成為新療法。本文整理粒線體在CKD中的角色,並指出未來治療的新方向。 PubMed DOI