原始文章

這項研究開發了一套全自動化系統,運用深度學習和電腦視覺技術,能從TEM影像中快速又準確地分割和量測腎小球基底膜厚度。結果顯示,這系統和人工量測高度相關(R² = 0.85),還能有效分類厚度,有助於臨床腎臟病診斷,省時又減少人為誤差。 PubMed DOI


站上相關主題文章列表

「Galileo」AI工具的開發目的是幫助病理學家解讀腎臟活檢,因為專家人數有限。一項多中心研究收集了腎臟活檢的影像,並訓練深度學習演算法來識別重要的病理特徵。該模型在訓練集上達到高精確度(81.96%)和靈敏度(94.39%),雖然驗證集的結果稍低,但仍然令人鼓舞。這個AI工具能將解讀時間縮短至2分鐘,相較於人類病理學家的22至31分鐘,顯著提高效率,可能改善腎臟移植的存活率。 PubMed DOI

這項研究探討腎小管周圍毛細血管(PTC)特徵與腎小球疾病進展的關聯,特別是間質纖維化和腎小管萎縮(IFTA)。研究分析了344名腎病患者的影像,利用深度學習量化IFTA和PTC特徵。研究人員找出與疾病進展相關的PTC關鍵特徵,並透過機器學習建立風險評分,這些評分與病情結果有關。結果顯示PTC的密度、形狀和結構對理解疾病進展的重要性,並揭示新的數位生物標記及PTC與微環境的互動。 PubMed DOI

這項研究評估了OpenAI的GPT-4V在識別眼底影像中青光眼特徵的準確性,並與專家評估者進行比較。分析了300張來自三個公共數據集的影像,結果顯示GPT-4V的整體準確性略低於專家,準確率分別為0.68、0.70和0.81。雖然GPT-4V在影像可評分性上表現出高一致性,但在特徵檢測的kappa值通常低於專家。總體而言,GPT-4V在青光眼篩檢中顯示出潛力,與專家評估在關鍵特徵上有高一致性。 PubMed DOI

這項研究開發了一個深度學習模型,旨在根據Berden分類法對抗中性粒細胞自體抗體(ANCA)相關腎小管腎炎的腎小管病變進行分類。模型訓練基於80名患者的腎臟活檢切片,達到93%的高預測準確率。研究中使用可解釋的人工智慧技術(如Grad-CAM)來增強模型的透明度,並讓病理學家分析熱圖,確認模型與他們的判斷一致。這項研究展示了深度學習與可解釋性技術結合的潛力,能提升診斷準確性並提供推理見解。 PubMed DOI

深度學習在數位腎臟病理學中展現潛力,但需依賴標註良好的數據集,這類數據集通常稀缺。為了解決這個問題,我們採用了自我蒸餾無標籤學習(DINO)的方法,分析了384個腎臟活檢切片中的10,423張腎小球影像。透過主成分分析(PCA),我們可視化了DINO模型提取的特徵,並進行分類任務。結果顯示,DINO模型在疾病分類上達到0.93的ROC-AUC,優於ImageNet模型,特別是在標註數據有限的情況下,DINO模型的表現更為穩定。這證實了DINO在無標註影像中有效提取組織學特徵的潛力。 PubMed DOI

這項多中心研究開發並驗證了一套用常規血液檢查數據(像是Scr、eGFR、PTH、BNP及性別)的機器學習模型和臨床風險預測圖,可準確預測慢性腎臟病患者的腎臟纖維化嚴重度,提供一個可取代侵入性腎臟切片的實用工具,且在不同驗證隊列中表現都很穩定,未來有望成為臨床上動態、非侵入性評估纖維化的新方法。 PubMed DOI

這篇綜述分析了3,581篇文獻,說明機器學習在青光眼早期診斷、疾病預測和個人化治療上的應用進展。重點聚焦於眼疾、視網膜影像和風險因子。研究也指出現有趨勢與不足,並建議結合多模態技術和大型語言模型,有望進一步提升青光眼診斷與照護品質。 PubMed DOI

這項研究用ResNet18深度學習模型,訓練超過4,000張腎臟切片EM影像,能自動判斷電子緻密沉積物的位置,AUC高達0.928–0.987,表現比資深醫師還好。團隊也開發網頁工具,讓臨床醫師能快速上傳影像並獲得自動判讀結果,提升效率與一致性。 PubMed DOI

這項研究發現,GPT-4o 和 Claude Sonnet 3.5 這兩款AI模型,經過少量範例訓練後,診斷OCT影像的準確率最高可達73%。雖然還不如專業深度學習模型,但在日常眼科診斷、特別是判斷正常個案時,已展現輔助潛力。未來需更多研究結合影像和臨床資料來提升表現。 PubMed DOI

這項研究用深度學習分析FSGS和MCD病人的腎臟切片,萃取出腎小管的細部特徵,發現這些AI計算的數據比傳統肉眼評分或臨床資料更能準確預測病情發展和蛋白尿改善。像基底膜變厚、上皮細胞變扁等變化,和較差預後有關,且會隨纖維化加重。AI分析有助提升風險預測,但臨床應用前還需更多驗證。 PubMed DOI