原始文章

電子顯微鏡(EM)一直是觀察腎臟結構的主要工具,但其樣本準備繁瑣、樣本大小有限、結果多為定性,且易受切片角度影響,限制了其在研究和診斷中的應用。隨著影像技術進步,超解析顯微鏡(如3D-SIM)成為有力替代,能達到低於100納米的解析度。本文探討各種超解析技術,特別是PEMP測量程序,能量化足細胞足突的變化,並在蛋白尿前識別異常,結合mRNA檢測和深度學習,為腎臟研究和個性化診斷提供新機會,推動腎臟病學的發展。 PubMed DOI


站上相關主題文章列表

腎臟學研究進展大,但仍面臨挑戰,如早期檢測、醫療不平等、治療差異。創新藥物、組織工程、再生醫學帶來希望。慢性腎病新藥、人工腎臟、組織工程移植腎臟、細胞/基因療法等進展令人振奮。基因醫學可治單基因腎病、全身疾病。投資、合作、創新至關重要。數據探索、科學方法將增強腎臟健康策略。 PubMed DOI

科技進步讓研究腎臟纖維化更有可能,對慢性腎臟疾病至關重要。研究人員透過比較健康和患病腎臟組織,找出導致纖維化的特定細胞類型。單細胞和空間多組學技術讓我們能更深入探討細胞起源和行為。進一步研究可提供更多有關腎臟纖維化的洞見,包括細胞谱系、可塑性和通訊。 PubMed DOI

這項研究探討了在急性腎損傷(AKI)背景下,如何利用纖維母細胞活化蛋白(FAP)影像學來預防和早期治療器官纖維化。主要發現包括:FAP在腎損傷後上調,與纖維母細胞活化及慢性腎病進展有關;在小鼠模型中,FAP持續上調與纖維化結果相關;利用PET/CT結合FAP抑制劑可非侵入性追蹤修復過程;臨床上,FAP影像能有效預測腎纖維化。這顯示FAP影像在監測腎損傷修復及臨床決策中具有潛力。 PubMed DOI

分子影像學在非侵入性診斷和監測腎臟疾病方面有了顯著進展,克服了傳統血液檢測和尿液分析的限制。這項技術利用特定的分子探針和先進影像技術(如MRI、PET、SPECT和超音波),能夠詳細檢測腎臟疾病的活動,並提供更好的空間和時間解析度。雖然已有初步的臨床研究顯示出好結果,但仍需進一步驗證才能廣泛應用。未來,分子影像學有潛力成為腎臟疾病診斷和治療的重要工具。 PubMed DOI

細胞外囊泡(EVs)是幾乎所有細胞釋放的小型膜結構,近年在腎臟病學中受到重視。研究從描述其蛋白質和轉錄特徵,轉向探討其作為腎臟疾病生物標記的潛力,並在診斷和監測中應用。儘管如此,EVs的分離方法多樣,導致研究結果不一致,影響可重複性。為解決這些問題,國際細胞外囊泡學會推出了MISEV指導方針,提升研究的標準化。這篇評論強調了腎臟病學中EV研究的進展及MISEV的潛在好處。 PubMed DOI

這項研究探討了腎小球中特定細胞的分子特徵,結合了基質輔助雷射脫附/電離成像質譜(MALDI IMS)和多重免疫螢光(MxIF)技術。重點在於了解這些特徵在疾病,特別是糖尿病腎病中足細胞喪失的變化。研究揭示了腎小球內脂質的異質性,並利用機器學習技術進行細胞類型的識別,促進了與腎小球細胞及其微環境的分子標記發現。這些成果對於理解腎臟疾病具有重要意義。 PubMed DOI

腎臟疾病影響超過8億人,亟需創新治療。奈米技術成為腎臟治療的新方向,透過奈米顆粒進行針對性藥物傳遞。近期研究聚焦於腎臟細胞在急慢性病中的變化,以找出最佳治療目標。奈米醫學的進展旨在提升奈米顆粒與腎臟細胞的結合效果,但仍面臨合成不一致及靶向困難等挑戰。為解決這些問題,需改進合成方法及開發更準確的動物模型。這些進展對腎臟疾病的管理至關重要。 PubMed DOI

腎功能會受到多種刺激影響,導致細胞損傷和發炎,這些過程是動態且漸進的,涉及白血球的移動和反應,時間從幾秒到幾週不等。研究人員透過活體成像技術,特別是多光子顯微鏡,能在實驗動物中可視化這些事件,增進對腎生理和病理的理解。這項技術對於研究超濾液生成、急性腎損傷及發炎白血球的招募至關重要。文章強調了活體成像在發炎性腎病模型中的應用,並探討未來的研究方向。 PubMed DOI

空間解析質譜(MS)和質譜成像技術越來越多地應用於腎臟生物分子研究,能無標記地檢測多種分子,如代謝物、藥物和蛋白質。這些技術透過分析生物液體、整個器官及單一細胞,為腎臟健康與疾病提供新見解。隨著樣本處理技術和空間解析度的提升,加上機器學習和人工智慧的應用,這些技術在腎臟病學中的價值預期將持續增長,填補基因組學和轉錄組學的不足。 PubMed DOI

全球超過8.5億人受腎臟病影響,早期發現很重要。腎臟病常會造成脂質代謝異常。質譜影像(像MALDI、DESI MSI)能幫助研究人員在腎臟特定區域觀察脂質變化,深入了解疾病機制。結合空間代謝體學和其他技術,有機會帶來新的臨床應用。 PubMed DOI