原始文章

這篇回顧重新探討了Fred S. Wright在1982年的重要研究,分析血流對腎臟功能的影響。他研究了腎小球毛細血管的血流如何影響過濾率,以及腎小球過濾與近端小管重吸收之間的關係(稱為腎小球小管平衡),還有血流對厚升支的溶質運輸和遠端小管鉀分泌的影響。這些研究為我們理解腎臟生理學奠定了基礎。我們希望在此基礎上,結合近期的運輸機制和調控進展,提出更易理解的原則性觀點。 PubMed DOI


站上相關主題文章列表

腎臟的近端小管在重新吸收和降解血漿蛋白質方面非常重要,能回收必需的營養素並維持身體平衡。若此過程受阻,可能會出現蛋白尿,這是腎臟疾病的常見指標。蛋白質透過受體介導的內吞作用被吸收,並在專門的內溶酶體系統中處理。了解這些機制對於腎臟病學的發展至關重要。此外,內溶酶體系統也可能成為腎毒素的通道,這些毒素可能損害小管,成為新療法的研究重點。創新的研究方法正在揭示這些過程在疾病狀態下的變化,對於理解蛋白尿相關的併發症及新治療方法具有重要意義。 PubMed DOI

淋巴特異性標記的進展讓我們能更深入了解淋巴血管網絡,這對於常被忽視的淋巴系統至關重要。淋巴系統在清除間質空間的液體和大分子方面扮演關鍵角色,尤其在腎臟中,因為腎臟需調節液體平衡。腎臟內的淋巴血管對環境變化特別敏感,生理狀況和疾病會影響其結構與功能。這篇綜述探討了腎淋巴血管的發展及其受腎間質影響的情況,並提到一些藥物對淋巴系統的影響,雖然目前尚無專門針對淋巴網絡的藥物。 PubMed DOI

腎臟每天過濾約180公升液體,但僅排出約2公升尿液。近端小管在過濾過程中扮演重要角色,透過運輸蛋白重新吸收糖類、氨基酸和鹽類,並主動分泌廢物和毒素。近期研究指出,調節這些運輸蛋白可影響腎臟疾病的進展。文中提到的藥物如SGLT2抑制劑和乙醯唑胺,對腎病、糖尿病及心衰患者有效。近端小管對重新吸收約60%過濾溶質至關重要,未來針對這些運輸蛋白的治療有潛力改善慢性腎臟疾病患者的結果。 PubMed DOI

腎臟的血管網絡在供應氧氣和營養、促進過濾功能上非常重要。研究人員開發了一個完整的老鼠腎臟血管模型,結合了血管網絡和腎小管的功能,評估了約30,000個腎小管的穩態及自我調節能力。模擬結果顯示,調節入球小動脈的阻力能穩定腎臟內的血流。這項研究為建立更真實的腎臟血流動力學模型提供了基礎,未來有助於虛擬腎臟的發展。 PubMed DOI

這項研究強調腎小管病理生理在慢性腎病(CKD)進展中的重要性,特別是有機陰離子轉運蛋白(OAT)和陽離子轉運蛋白(OCT)的角色。研究中,九名健康志願者和22名CKD患者接受了一系列測試,結果顯示GFR穩定,但腎小管分泌反應有顯著變異。OAT的刺激反應與尿毒症溶質呈負相關,且尿液生物標記物與腎小管分泌增加有關。總之,CKD患者中OAT和OCT功能受損,與尿毒症溶質滯留及腎小管功能障礙有關。 PubMed DOI

能量代謝與運輸過程對腎臟近端小管細胞的功能非常重要。最近的研究利用代謝組學和轉錄組學,揭示了單細胞轉錄組特徵變化與腎臟發育及疾病的能量代謝之間的關聯。研究發現,近端小管細胞可依脂肪酸氧化酶的mRNA水平分為高低兩群,慢性腎病患者的低氧化能力細胞比例較高,且與鈉運輸蛋白水平降低有關。這些發現有助於理解不同代謝能力如何影響患者的疾病特徵,為腎臟科的精準醫療提供依據。 PubMed DOI

Ferroptosis(鐵死亡)是依賴鐵的細胞死亡,跟腎臟纖維化及慢性腎臟病惡化有關。這篇綜述說明鐵代謝失調、GPX4失活和脂質過氧化會引發ferroptosis,導致發炎和纖維化。文中也提到像鐵螯合劑、GPX4活化劑、抗氧化劑和基因治療等新療法,有望預防或治療腎臟纖維化。 PubMed DOI

腎臟會靠三種鈉依賴性磷酸鹽轉運蛋白來調節體內磷酸鹽,這些蛋白會受到荷爾蒙和其他機制影響。基因突變可能導致腎結石、佝僂症或腎功能惡化。抑制這些蛋白有機會治療慢性腎臟病的高磷血症,也是未來藥物開發的重要方向。 PubMed DOI

這篇文章整理了腎臟間插細胞分化和酸鹼平衡調控的最新發現,指出Foxp1、Dmrt2、Hmx2等轉錄因子對細胞發育很重要,Notch和Foxi1訊號則影響主細胞和間插細胞的轉換。單細胞定序也發現了過渡型細胞,顯示細胞命運有彈性。這些分子機制的了解,有助於未來開發治療酸鹼失衡的新方法。 PubMed DOI

慢性腎臟病(CKD)治療有限,腎功能儲備(RFR)在CKD症狀出現前就會下降,這會引發代謝和發炎問題,加速CKD惡化。本文整理RFR喪失的分子機制、測量方法,並介紹新藥和飲食策略,有望幫助早期CKD管理。 PubMed DOI