原始文章

腎小球疾病是一類腎臟疾病,可能有相似的基因表達模式。研究人員透過空間轉錄組學分析患者與健康對照者的腎臟活檢樣本,發現腎小球疾病患者的腎小球中有35個基因表現持續下調,且無基因上調。這些下調基因中有12個與DNA結合轉錄因子活性有關,還影響脂質信號、類固醇激素反應及細胞週期調控。研究結果提供了腎小球疾病的分子機制見解,可能為新診斷或治療方法鋪路。 PubMed DOI


站上相關主題文章列表

慢性腎病(CKD)是一個全球健康問題,本研究旨在找出與腎纖維化相關的生物標記,並探討單側輸尿管阻塞(UUO)、免疫細胞浸潤及細胞死亡之間的關聯。研究團隊分析了多個研究的基因表達數據,並透過蛋白質互作網絡及SVM-RFE方法識別出七個關鍵基因。實驗結果顯示,Bcl2a1b、Clec4n和Col1a1可能是UUO的潛在生物標記,且UUO的發展與免疫細胞浸潤及炎症通路活化有關。 PubMed DOI

這項研究探討跨膜蛋白30A (TMEM30A) 在局灶性和節段性腎小管硬化症 (FSGS) 中的角色。研究顯示,FSGS患者的腎組織中TMEM30A和腎小管細胞標記物Synaptopodin的表現顯著降低。透過基因敲除和轉錄組分析,研究人員發現與糖解途徑相關的基因和代謝物表現下調。引入抗性形式的TMEM30A可部分逆轉這些變化,顯示TMEM30A的下調可能透過影響糖解作用來促進腎小管細胞損傷,並成為FSGS的潛在診斷和治療目標。 PubMed DOI

腎纖維化在慢性腎病中扮演重要角色,但目前有效的診斷和治療選擇仍有限。最近研究顯示,RNA結合蛋白(RBPs)在纖維化過程中關鍵。研究人員分析了175個腎纖維化樣本和99個正常樣本,利用生物資訊學和機器學習技術識別重要RBPs。診斷模型顯示高準確性(AUC = 0.899),並得到外部驗證。這些RBPs參與免疫相關通路,並可能成為潛在治療靶點。此研究增進了對腎纖維化機制的理解,並提供了新的生物標記和治療方向。 PubMed DOI

低腎元數量與慢性腎病(CKD)及高血壓風險增加有關。為了研究腎元不足的影響,我們創建了一種新型近交大鼠模型(HSRA大鼠),其中75%的後代僅有一個腎臟。研究顯示,這些大鼠的腎元數量減少約20%,並在18個月時出現顯著的蛋白尿,顯示CKD風險增加。透過甲基化測序、單核RNA測序及蛋白質組學分析,我們發現多個基因及366個差異表達的蛋白質,特別是Deptor和Amdhd2基因,可能在腎臟發育中扮演重要角色,未來可用於改善腎元健康及減緩腎病進展。 PubMed DOI

最近的研究指出,補體基因在腎臟的局部表達對正常生理及病理狀況相當重要,但對這些基因與腎臟環境變化的關係分析仍不足。我們分析了健康人類、C57BL/6小鼠及腎臟移植排斥小鼠的單細胞RNA測序數據,並將50個補體基因分為五組。結果顯示,正常小鼠腎臟中補體基因表達較低,主要由巨噬細胞和系膜細胞表達,而移植排斥小鼠的表達則顯著增加。這些發現增進了我們對腎臟補體系統調控及其在腎臟疾病中的角色的理解。 PubMed DOI

這項研究分析基因表現,找出和氧化壓力有關的關鍵基因,發現在腎小球有CD44、ITGB2、MICB、RAC2四個核心基因,在腎小管間質則有VCAM1、VEGFA兩個核心基因,這些基因和免疫、發炎反應及現有藥物有關,對AAGN的診斷和治療有新啟示。 PubMed DOI

像minimal change disease和FSGS這類腎小球疾病,會讓足細胞受損、產生蛋白尿,進一步導致慢性腎臟病。研究發現,這些疾病會造成腎小球和足細胞基因的mRNA選擇性剪接和多腺苷酸化出現明顯變化,特別影響過濾屏障相關基因。這些RNA處理異常會破壞足細胞功能,促使疾病發生。部分治療能逆轉這些變化,寡核苷酸也能調控剪接。總之,mRNA處理改變是腎小球疾病的重要致病機制。 PubMed DOI

這項研究用空間轉錄體學分析C3腎小球病變患者的腎臟切片,發現與細胞外基質和干擾素活性相關的基因表現特別高。補體C3可能透過CD11c與ECM互動。實驗也證實,補體活化的巨噬細胞會促使腎小球內皮細胞產生纖維化,並增加ECM基因表現,為C3G的致病機制帶來新見解。 PubMed DOI

這項研究發現,成人和兒童IgA腎病患者的腎臟基因表現雖都顯示免疫和補體路徑活化,但在內質網、粒線體及T細胞活化等路徑上有不同表現,顯示兩者疾病進展的分子機制可能不一樣。 PubMed DOI

本研究針對AAV-GN病人,發現現有預測腎臟預後的工具效果有限。團隊分析腎臟切片後,找出150個免疫相關基因有顯著變化,並開發出全新12基因分子標記,預測腎臟存活率的準確度大幅優於傳統組織學評分。這項分子標記有望提升AAV-GN病人的個人化治療與預後判斷。 PubMed DOI