原始文章

對於無賴氨酸激酶(WNKs)對噻嗪敏感鈉氯共轉運蛋白(NCC)的調控,研究始於2000年代初,當時發現WNK1和WNK4的突變與家族性高鉀性高血壓(FHHt)有關。這與由SLC12A3基因突變引起的Gitelman症候群相對立。研究顯示WNKs增強NCC活性,影響FHHt的病理生理。雖然許多問題已釐清,但KS-WNK1的功能仍具爭議,該亞型主要在腎臟遠端捲曲小管中表達。本研究旨在總結KS-WNK1的生理學知識演變及其在腎功能中的潛在角色。 PubMed DOI


站上相關主題文章列表

WNK4-SPAK/OSR1途徑影響NKCC2和NCC的磷酸化,但對NKCC2影響較輕微,暗示其他激酶參與。在FHHt模型中,即使WNK4水平變化,NKCC2磷酸化保持不變,解釋了FHHt對噻嗪敏感性。這凸顯了WNK4-SPAK/OSR1途徑對NCC和NKCC2的差異調節。 PubMed DOI

加壓素透過V2受體調節水平衡,影響轉運蛋白活性。WNK4在調節這些途徑中扮演關鍵角色,將cAMP信號與腎臟功能連接起來。這項研究揭示了加壓素通過WNK信號途徑調控腎功能的機制。 PubMed DOI

KS-WNK1是一種在腎臟遠曲小管中發現的激酶,可能參與調節鉀排泄。研究顯示,缺乏KS-WNK1的老鼠在鉀攝取變化時表現較差,影響了NCC的磷酸化和去磷酸化。KS-WNK1在幫助腎臟應對鉀水平變化中扮演重要角色。 PubMed DOI

腎臟在維持穩定的血漿鉀濃度扮演關鍵角色,對細胞功能至關重要。最新研究挑戰了醛固酮是K+平衡的主要調節因子的看法。腎臟中的局部醛固酮獨立系統,在遠曲小管中,被視為應對飲食中K+攝入變化的關鍵。主要激酶mTOR,在生長和新陳代謝中扮演重要角色,對這些醛固酮獨立反應至關重要。研究指出,mTOR受細胞內K+水平調控,對於細胞自主K+信號傳遞及其與醛固酮依賴途徑的互動有重要影響。這些機制的了解對K+調節、醛固酮悖論和疾病發展具有重要意義。 PubMed DOI

缺乏鉀可能增加罹患高血壓風險,因為腎臟會重吸收鈉。遠曲小管在調控這個過程扮演重要角色,KS-WNK1缺失會影響鹽分運輸。這研究強調了鉀對身體的重要性,特別是對腎臟功能的影響。 PubMed DOI

這篇評論探討高血壓中鹽敏感性的分子機制,特別是遠端腎小管鈉運輸的調控。雖然鈉重吸收通常與醛固酮有關,但新研究顯示鉀水平也有獨立影響。細胞外鉀濃度與腎小管鈉運輸的互動非常重要,尤其是鈉-氯共轉運蛋白(NCC)和上皮鈉通道(ENaC)之間。關鍵的分子途徑包括WNK-SPAK/OSR1信號傳導、KLHL3-CUL3複合體等。這些途徑有助於解釋鉀水平變化如何影響鹽敏感性及血壓,並可能成為新的治療方向,但仍需進一步研究。 PubMed DOI

家族性高鉀性高血壓症(FHHt),又稱戈登症候群,與WNK4異常有關,影響腎臟的遠端捲曲小管(DCT)。CUL3基因突變會干擾其與COP9信號體的互動,導致FHHt。研究顯示,刪除DCT中的CUL3或Jab1會激活WNK4-SPAK-NCC通路。短期內,這兩種缺失模型的WNK4、SPAK和磷酸化NCC水準上升,但未見腎損傷。長期觀察中,DCT-Jab1-/-小鼠出現腎損傷標記KIM-1上升,顯示Jab1可能在腎損傷中扮演重要角色。 PubMed DOI

在腎臟中,亨利氏環的粗上升支(TAL)對調節氯化鈉(NaCl)平衡和血壓非常重要。研究發現,NKCC2這個鈉/鉀/2氯共轉運蛋白在鹽敏感性高血壓中重吸收異常增加。研究指出,F-肌動蛋白交聯蛋白ACTN4與NKCC2之間有關鍵相互作用,ACTN4能調節NKCC2在頂膜的表達。透過靜默ACTN4,研究發現NKCC2的表面量增加,並且利尿效果提升35%。這顯示ACTN4可能影響腎臟的NaCl重吸收,與高血壓有關。 PubMed DOI

高血壓是一個重要的健康議題,研究發現交界蛋白paracingulin (CGNL1)在其發展中扮演關鍵角色。透過小鼠模型進行的實驗顯示,CGNL1基因剔除的小鼠在誘導高血壓時未出現血壓升高,顯示CGNL1對高血壓的調節作用。研究還發現CGNL1缺失會影響腎小管中關鍵離子運輸蛋白的表達及活化,並且影響AMPK、ERK等信號傳導途徑。這突顯了CGNL1在高血壓調控中的新角色。 PubMed DOI

Ang-II短期內會透過刺激腎臟遠曲小管的Kir4.1/Kir5.1鉀通道,提升NCC活性,這需要AT1a受體和Kir4.1參與。不過,長期來看,即使缺少Kir4.1/Kir5.1,Ang-II還是能活化NCC,代表長期作用有其他不靠Kir4.1/Kir5.1的機制。 PubMed DOI