原始文章

大型語言模型(LLMs)在藥物傳遞材料設計中展現潛力。我們使用Hugging Face的Transformers套件,透過BigBird、Gemma和GPT NeoX等架構進行預訓練和微調,並結合化學家的指導進行優化。研究結果顯示,整合化學見解對於提升模型性能至關重要。我們設計了光響應藥物傳遞分子,並探討了人類反饋在強化學習中的角色。最終,我們建立了一個高效的設計流程,但缺乏專門數據集仍是挑戰。 PubMed DOI


站上相關主題文章列表

Transformer模型可加速藥物開發和材料探索。預訓練需大量數據,但在聚合物科學等領域數據稀缺。透過數據擴增、小分子數據集和遷移學習,可克服此問題。研究指出,先在小分子上預訓練Transformer,再微調至聚合物,可達到與擴增數據集訓練相似的準確性。 PubMed DOI

生成式機器學習在使用SMILES語言設計藥物分子上取得成功。研究指出大型語言模型在藥物設計有潛力,透過預訓練的方式成功轉移到藥物領域,效果優於先前研究。這種模型能生成對特定靶點有效的分子,展現了在藥物發現上的潛力。這為未來更大型的研究提供可能性,有助於開發非專利的藥物替代品。 PubMed DOI

研究指出,大型語言模型(LLM)在翻譯藥物描述上有潛力,但仍有改進空間。這種翻譯有助於開發更有效的藥物治療,降低成本,並透過人工智慧改革醫療領域。然而,藥物和適應症研究仍需更深入。 PubMed DOI

大型語言模型(LLMs)在各種任務上表現出色,但在化學領域卻遇到困難。ChemCrow是一個LLM化學智能助手,整合了專業工具和GPT-4,以增強有機合成和藥物發現等化學任務。ChemCrow能夠自主規劃合成路線並有效地引導發現,將實驗和計算化學有效地連結,促進科學進步。 PubMed DOI

大型語言模型(LLMs)在醫學和臨床資訊學中扮演重要角色,能幫助突破和個人化治療。透過分析複雜的生物數據,揭示基因組學、蛋白質結構和健康記錄中的隱藏模式,對基因組分析、藥物開發和精準醫學有所助益。然而,必須面對數據偏見、隱私和道德等挑戰,才能負責任地應用。克服這些障礙將帶來分子生物學和製藥研究的重大進展,造福個人和社區。 PubMed DOI

LLMs如GPT和LLaMA在化學領域有潛力,尤其在用SMILES表示化學結構。研究比較後發現,LLaMA在分子性質和藥物相互作用預測上比GPT表現更好。LLaMA的SMILES嵌入在分子預測與預訓練模型相當,藥物相互作用預測更佳。這研究強調LLMs在分子嵌入有潛力,值得進一步探索。詳情請看GitHub:https://github.com/sshaghayeghs/LLaMA-VS-GPT。 PubMed DOI

分子生成是人工智慧的一個重要領域,對小分子藥物開發影響深遠。現有方法在某些設計上表現不佳,因此我們提出了FU-SMILES框架,透過片段簡化分子輸入,並推出了FragGPT這個通用分子生成模型。FragGPT在大型數據集上預訓練,能高效生成新分子、連接子設計等,並結合條件生成和強化學習技術,確保生成的分子符合生物學和物理化學標準。實驗結果顯示,FragGPT在生成創新結構的分子方面表現優異,超越現有模型,並在藥物設計中得到驗證。 PubMed DOI

小分子的設計對於藥物發現和能源儲存等技術應用非常重要。隨著合成化學的發展,科學界開始利用數據驅動和機器學習方法來探索設計空間。雖然生成式機器學習在分子設計上有潛力,但訓練過程複雜,且生成有效分子不易。研究顯示,預訓練的大型語言模型(LLMs)如Claude 3 Opus能根據自然語言指示創建和修改分子,達到97%的有效生成率。這些發現顯示LLMs在分子設計上具備強大潛力。 PubMed DOI

開發新分子以推進藥物發現非常重要,因為這能省去探索目標基因的初步步驟。傳統方法常依賴現有數據篩選分子,但因數據集有限,可能受到限制。為了解決這些問題,我們推出了GexMolGen,這是一種根據基因表達特徵生成類似命中分子的全新方法。它透過「先對齊再生成」的策略,將基因表達特徵與分子表示對齊,並確保生成的分子結構有效。實證結果顯示,GexMolGen能生成與已知物質相似的分子,為藥物發現提供了新途徑。 PubMed DOI

大型語言模型(LLM)技術為合成化學帶來了新機會。我們開發了一個基於LLM的反應開發框架(LLM-RDF),利用GPT-4簡化化學合成任務。這個框架包含六個專門的代理,能執行文獻搜尋、實驗設計、硬體執行等功能。我們還創建了一個網頁應用程式,讓化學家能用自然語言與自動化實驗平台互動,無需編碼技能。LLM-RDF在銅/TEMPO催化的醇類氧化反應中展現了其完整的合成開發能力,並在多種反應中證明了其廣泛適用性。 PubMed DOI