原始文章

足細胞的喪失是腎小球疾病進展的重要因素,通常由細胞凋亡和脫落引起。最近研究指出,蛋白質S(PS)透過激活足細胞中的Tyro3受體,具有保護作用。雖然Tyro3在糖尿病腎病早期表現增加,但隨著病情惡化會下降,這與疾病進展有關,可能成為預測標記。高葡萄糖可增強Tyro3表現,而TNF-α則降低PS和Tyro3水平。Tyro3激動劑顯示出保護足細胞的潛力,可能成為腎小球疾病的治療新方向。 PubMed DOI


站上相關主題文章列表

約30%的接受腎移植的病患可能會出現腎病症候群,導致快速復發,原因是影響腎細胞的循環因子。研究指出,活化PAR-1會導致腎損傷,進而促成腎疾病。研究人員透過研究人類足細胞和小鼠模型,發現PAR-1在腎疾病中扮演重要角色,並透過干預TRPC6蛋白來改善病情。這項研究顯示PAR-1的活化對腎病症候群至關重要,且受到TRPC6的調控。 PubMed DOI

研究發現,在糖尿病腎病中,足細胞損傷是重要因素,蛋白質如podocin扮演關鍵角色。刪除SHP-1可預防和逆轉糖尿病相關腎損傷,包括白蛋白尿和腎功能變化。SHP-1的刪除影響了DKD進展關鍵蛋白質的表達,顯示其可能成為治療DKD的潛在靶點。 PubMed DOI

研究指出,自噬有助於保護糖尿病腎病(DKD)中的腎小球細胞,促進腎小球自噬或許有助於控制DKD。研究發現TRPC6和鈣蛋白酶活性損害腎小球細胞自噬的新途徑,導致損傷和惡化DKD。抑制鈣蛋白酶可促進腎小球細胞自噬,減少損傷。因此,增強腎小球細胞自噬可能成為治療DKD的潛在方法。 PubMed DOI

腎小球上皮細胞對腎臟功能至關重要,受機械力影響。了解其細胞生物學揭示了機械生物學信號、細胞骨架動態和細胞黏附的重要性。這種韌性對維持過濾功能至關重要,並可開發新的腎臟疾病治療方法。 PubMed DOI

腎小球上皮細胞是導致蛋白質滲漏、進而導致腎衰竭的重要細胞。目前治療仰賴藥物再利用,但研究已找出與細胞損傷相關的基因和因子,為更精準治療帶來希望。了解損傷機制、再生治療、新藥臨床試驗和藥物遞送系統的進展,顯示治療腎小球疾病前景看好。 PubMed DOI

足細胞的喪失是原發性腎小球疾病的關鍵因素,雖然糖皮質激素是主要治療方式,但長期使用會有副作用。克魯佩爾樣因子15(KLF15)在維持足細胞健康中扮演重要角色。研究發現BT503,這是一種新的KLF15激動劑,能在壓力下保護足細胞,並改善小鼠模型的蛋白尿情況。BT503透過結合IKKβ,抑制NF-κB信號通路,恢復KLF15水平,幫助防止足細胞喪失及腎損傷,顯示出作為糖皮質激素替代品的潛力。 PubMed DOI

足細胞在腎臟中扮演重要角色,與老化過程密切相關。了解其老化過程有助於識別損傷脆弱性及保護策略。生理性老化和病理性壓力(如氧化壓力、線粒體損傷)會加速足細胞衰老。關鍵標記如SA-β-gal和β-羥丁酸可用來評估老化狀態。足細胞的健康與周圍細胞息息相關,細胞間互動至關重要。本文探討足細胞衰老的機制、相關生物標記及潛在治療方法,包括elamipretide、鋰、熱量限制和雷帕霉素等。 PubMed DOI

足細胞損傷在糖尿病腎病(DKD)的發展中扮演重要角色,導致白蛋白尿。研究發現,組蛋白去乙醯化酶Sirtuin6(Sirt6)與DKD進展有關,而PI3K/AKT通路則調節足細胞的細胞骨架結構。實驗中,db/db小鼠顯示腎損傷,Sirt6和PI3K/AKT表達降低。使用Sirt6激活劑UBCS039可改善腎損傷,並增強Sirt6及PI3K/AKT表達。結果顯示,Sirt6透過激活PI3K/AKT信號通路,保護足細胞免受高葡萄糖誘導的損傷,顯示其作為DKD治療的潛力。 PubMed DOI

腎小球疾病是全球慢性腎病的主要原因,通常由獲得性和遺傳性疾病造成,破壞腎小球的過濾功能。這會導致足細胞受損,進而引發蛋白尿和腎功能障礙。目前已知超過70種單基因引起的蛋白尿性腎病,主要影響足細胞中表達的基因。這些基因對維持腎小球結構和功能至關重要。文章總結了單基因足細胞病的機制,並探討基因組技術和細胞生物學的進展,為個性化療法如小分子和基因治療提供了新方向。 PubMed DOI

這項研究探討足細胞在糖尿病腎病(DKD)中的角色,特別是它們對一種名為PANoptosis的細胞死亡形式的敏感性。研究發現,DKD患者的足細胞中TNFSF10和TNFRSF10B的表達增加,且與病情嚴重程度相關。體外實驗顯示,TNF-α可刺激這些基因的表達,並影響足細胞的PANoptosis。使用糖尿病小鼠模型的研究顯示,抑制這些基因可減少腎損傷,顯示TRAIL和DR5在DKD中可能是潛在的治療靶點。 PubMed DOI