原始文章

最近,人工智慧和自動化的進展正在徹底改變催化劑的發現與設計,從傳統的試錯方法轉向更高效的高通量數位方法。這一變化主要受到高通量信息提取、自動化實驗、實時反饋和可解釋機器學習的驅動,促成了自駕實驗室的誕生,加速了材料研究的進程。近兩年,大型語言模型的興起也為這個領域帶來了更大的靈活性,改變了催化劑設計的方式,標誌著學科的革命性轉變。 PubMed DOI


站上相關主題文章列表

像GPT-4這樣的大型語言模型因其在化學和材料科學中的應用潛力而受到關注。最近的一次黑客松展示了利用這些模型的各種項目,從預測分子性質到開發教育工具。這次活動突顯了LLM對科學領域的廣泛影響,不僅僅是在化學和材料科學領域。 PubMed DOI

大型語言模型的AI工具展現了機器自主生成知識的潛力,是通往通用人工智慧的重要一步。機器能理解文獻、解釋數據、提出科學問題。雖然AI能自學,但人類協助可加速學習,如模擬人類分析數據或辨識模式。個人AI助理可協助用戶,尤其在特定任務,如材料科學研究。 PubMed DOI

GPT-4是一個廣泛應用在各領域的大型語言模型,如自然語言處理、生物學、化學和電腦編程。Coscientist是由GPT-4驅動的人工智慧系統,能自主設計、規劃和執行複雜實驗,成功優化反應等任務,顯示了在實驗設計和執行方面的高級能力。Coscientist凸顯了人工智慧系統在加速研究方面的潛力,具有多功能性、高效性和可解釋性。 PubMed DOI

人工智慧,特別是大型語言模型(LLMs),現在被廣泛運用,因為能跟人類溝通。透過大量網路資料訓練,LLMs能產生各種專業文本。研究指出,GPT-4能在不到一小時內寫出完整的藥學手稿。雖然LLMs在科學研究有潛力,但仍需要人類參與,如參考文獻和數據驗證。該研究探討了將LLMs融入科學研究的優勢和挑戰。 PubMed DOI

自然語言處理和大型語言模型(如GPT)的進步為各個領域的研究開辟了新的可能性。在催化研究中,像ChatGPT這樣由GPT驅動的模型可以加速對催化過程的理解。科學家可以利用ChatGPT獲取洞察力,並開發創新方法來改善催化劑,就像在氧氣進化反應中一樣。 PubMed DOI

人工智慧工具如GPT-4在化學和材料研究中扮演重要角色。雖然GPT-4有進展,但科學界尚未廣泛使用大型語言模型。研究評估了六個開源的大型語言模型在金屬有機骨架(MOFs)研究中的表現,其中Llama2-7B和ChatGLM2-6B表現優異。高參數版本的模型表現更佳。 PubMed DOI

大型語言模型(LLMs)在各種任務上表現出色,但在化學領域卻遇到困難。ChemCrow是一個LLM化學智能助手,整合了專業工具和GPT-4,以增強有機合成和藥物發現等化學任務。ChemCrow能夠自主規劃合成路線並有效地引導發現,將實驗和計算化學有效地連結,促進科學進步。 PubMed DOI

預先訓練並微調的大型語言模型(LLMs)在預測無機化合物的合成可行性和選擇無機合成的前驅物方面非常有效。相較於專門的機器學習模型,微調後的LLMs表現優異,使用者需要的專業知識、成本和時間也較少。這種方法將成為未來化學機器學習研究的重要參考,同時也是實驗化學家的實用工具。 PubMed DOI

這段文字探討了機器學習模型的進展,特別是在電腦視覺和自然語言處理領域,像ChatGPT和Stable Diffusion等大型模型的影響。雖然在材料科學中,機器學習已在逆向設計和材料預測上取得進展,但現有模型仍過於專門,無法完全取代傳統工業流程。為了解決這個問題,建議開發一個全面的機器學習模型,能理解人類輸入並提供精確解決方案,並透過建立集中式數據集來訓練模型,以促進創新和查詢的便利性。 PubMed DOI

小分子的設計對於藥物發現和能源儲存等技術應用非常重要。隨著合成化學的發展,科學界開始利用數據驅動和機器學習方法來探索設計空間。雖然生成式機器學習在分子設計上有潛力,但訓練過程複雜,且生成有效分子不易。研究顯示,預訓練的大型語言模型(LLMs)如Claude 3 Opus能根據自然語言指示創建和修改分子,達到97%的有效生成率。這些發現顯示LLMs在分子設計上具備強大潛力。 PubMed DOI